Loading methods in Subfiles

I like to discuss about Loading methods & user’s actions that cause reloading a subfile and the need of a few provisions in RPG.

User actions:
1) A tendency to quickly page up/ page down a few times (immediately once a subfile is loaded) from the current page and come back to the current page
2) Reloading the subfile by -
b) Go to (nth page) functionality
c) Position to (a column value) functionality
d) Filter criteria
e) Refresh (the subfile while on any page & show from 1st page)

	All these might cause loosing of current page records from memory (ie, subfile) and a different set of records are loaded into subfile. There are chances user wants to see a page that was just previously visited.
	In such cases, if the previously loaded records are deleted from the subfile, database I/O (reading from PF) would become a repetition. I like to devise methods that retain records in the program’s memory once read into program even if the subfile is cleared for some reason (Minimal disk read operations means a performance optimization). So, when the user wants to see a previously visited page, it should be from program memory (or, main memory) rather than disk.
	We need a place to store the subfile records in order to save. This could be:
A hidden duplicate subfile/ Multiple occurrence DS/ record-set object (a new data type).

Real time example -
I have seen ‘position to’ coding like this in a real business application:
	That was an alphanumeric field on a subfile listing defined as key coulmn. ‘Position to’ entered for that field beginning with value ‘C’. Now first set of ‘C*’ values are loaded. A page up from the first page is supposed to show the last set of ‘B*’. But the program displays message like ‘first page is already reached’ and in fact the user is expected to change the input from ‘C*’ to ‘B*’ and then go many pages down to see the last page of ‘B*’ set. (If the user wants to go beyond the last page of C* (next page with D*), that works fine.)

	As another case, the actual record matching the ‘position to’ might be in a few pages down in the subfile itself. But as there is no key field column in the subfile (except RRN), subfile position to has to be done by sequential read of subfile records. This method is not implemented by the programmers (due to extra coding or they never know they have to implement this). Instead, the whole subfile is cleared and reloaded from the PF.

	There are many programmers who are reluctant to think about many things. Some never know the impact of database I/O. Some never know that subfile records are loaded into main memory of the system. Some think that disk is the main memory. Some never know that as/400 has main memory.

	Also, subfile loading methods in as/400 are a little cumbersome by themselves.

Expanding subfile:
How do we implement expanding subfile?

Initially we load certain fixed number of pages (say, n). If the user presses page down at the current last page, subfile will grow by one/ more pages at a time.

How many pages can the subfile be allowed to expand practically? And, when to stop expanding?
	Although 9999 records is the limit, can the program load all records? If, suppose, 9999 records are loaded, will the user come back to 1st record from the last page by pressing 1000 times page up (say 10 records/page)?
	In fact there should be no limit to the number of page downs by a user but the program need not keep all of them in the subfile.
	Once the user has pressed page down a certain number of times (say 25 pages for example) then we should stop expanding the subfile.
	Practically, users will not go back more than about 25 pages up. So there is no use of retaining 1st page anymore. For every page down afterwards, we can discard the first page of the subfile and retain from 2nd page only.
	To state precisely, if the subfile is expanded up to 25 pages, then next page down should not expand it. Instead, delete the first page of the subfile, move up (shift up)
2-25th pages as 1-24th page and load 25th page from PF afresh.
Again if user pages down, repeat the same steps - ie., ignore the 1st page, shift up the rest of the pages and load a new page as 25th page.

	This is all in the hands of the programmer only. This needs extra coding that offers some advantages - saving the system memory (because it need not be allocated for 9999 limit but only 250 limit) if we consider several jobs running in the system at a time Also, making the programmer to be more thoughtful about end user’s every action.

	There should be a file level keyword or subfile record level keyword in DSPF DDS, that can be used to set maximum memory space required for expanding method of loading at the programmer’s discretion.
	For example, a new keyword named SFLLMT(500) could be used to say Subfile Expanding Limit is 500 records (instead of the current fixed norm of 9999). This will save system resources allocated to the program.
	For expanding method as well as load all method, 9999 records limit is practically huge and can be reduced to 999 records. (There can be a QSYSVAL to maintain this value at system level).
	And, in order to facilitate resequencing of RRNs, RPG needs to provide a mechanism to move up a subfile by one page and discard one initial page.
	Also, similar situation arises when paging up a 25 times and the subfile expands in the opposite direction. Here, the subfile should be moved down by one page.
	In short, we won’t clear the entire subfile while page up/ down is pressed. Instead, we discard one page at the other end of the subfile and push down / push up the subfile by one page (resequence of RRNs) and load the new page from PF.

 User actions once a page is loaded:
User tendency - going few pages back and forth the current page:

	When a subfile is displayed (say with a 10 pages) for a position to operation, many users tend to press a few page downs and return back to first page and press a few page ups (to see above the first page / BOF) and return back to first page. Then only they feel comfortable to read/ observe the first screen and analyze whatever they want. This is especially true for managers and team leads.

Single page loading method and the effect of user tendency:
	Only one page is always loaded into subfile.
	When the user presses page down / up, we discard the current page and load another page from PF. If the user now wants to see the previous page, it has to be loaded again and we need to re-read from PF.
	Such back and forth page ups/ downs have to be considered as expected behavior of the user.
	If a page contains 10 records, then 10 duplicate reads would be required from the PF
and database I/O is always a costlier thing, we should have a solution.
	The situation will worsen if some ‘Filter’ criteria are applied to load records (wherein, for example, a 100 records may be read to filter out a 10 records) and database I/O for loading a filtered single page is more than normal load.

What changes are expected now in RPG?
a) Load all & single page methods could be deprecated. (These can be simulated by the programmer using expanding method). (Do we have such loading methods in other computing technologies/ in web technologies?)

b) Have a mechanism to store the subfile records into another hidden duplicate subfile/Multiple occurrence DS/record-set object. This is to avoid repetition of database I/O. Overhead is to properly index the page number and record number so that the program knows which page is already read into the program, etc.

c) Some operations on subfile required in RPG -
· Change the RRN of any record to another value. (resequence subfile RRNs).
Sfl-1.ShiftRRN(+10)// to renumber all RRNs by +10 (to move up by one page).
Sfl-1.ShiftRRN(-10)// to renumber all RRNs by -10 (to move down by one page).

d) The subfile has to be declared/ treated as an object inside RPG. And, methods and properties are to be available for the subfile object. Then, it is possible to write like:

Sfl-1.Clear();
Sfl-2.current_page = 5; // set a page number before redisplay to screen
Sfl-2.pageload(5)=sfl1.page(5); //move 5th page of sfl-1 to a duplicate subfile 					 sfl-2
or
Sfl-1.Save(page#from,page#to,Sfl-2); // A new subfile Sfl-2 is created 							automatically (with no control format).
Sfl-1.load(Sfl-2); // load sfl-1 back from sfl-2

An approach to single page loading that avoids duplicate database I/O:
(This is almost similar to expanding loading method discussed before).
· Declare a dummy expanding subfile
· With initial loading of 1st page, user presses page down. For page down, save the first page into the dummy subfile & clear the main subfile and load it with 2nd page of data.
· If the user continues to page down (to a fixed number of times, say 20 pages), then there will be 20 pages saved in dummy subfile and 21st page is on current screen. If user takes page down again, first page has to be discarded in the dummy subfile and resequencing of RRNs should take place and save the 21st page to dummy subfile and then load 22nd page to the screen.
· Now if user wants to page up, then retrieve from dummy subfile the 21st page and load onto screen. (In this point, discarding 22nd page can be acceptable. Or to keep this also saved, we could write this also into dummy subfile).
· When page up is requested again, it will be only from dummy subfile and not from PF.

Further & to add to the above, we have some more scenarios.

‘Position to’/ ‘Go to’/’Filter’ functionality and repetition of database I/O:
These functions could be used repeatedly by the user and there can be chances of database I/O repetition to load the pages similar to page down and page up functions.

Random jumping with position to:
How many duplicate subfiles to keep in memory?
Practically, immediate few previous pages and few next pages are to be in memory (if these were already fetched into program).
Now, consider a user jumping to page 10, then page 5, then page 30, then page 7 etc. randomly using Go to / position to functionality. In such cases, saving the subfile records & maintaining their RRNs, page number etc. will be tedious.
	So, developer should have practical sense to maintain the previous records. For random user behavior, saving in program memory cannot be implemented easily and that will require a Linked list approach and so, reloading from PF could be justified for this case.

Consider a few examples -

1)		There are program designs in which page ups/ downs work only within the selection criteria (Filter conditions), and, page ups work only within the position to.
	To explain, suppose a file contains data for a whole year with key on month field (sorted for each month). When a Filter on month=2 is applied and if user presses page up to see data for month=1 or page downs to see data for month=3, that won’t work. User is forced to type in month=1 or 3 as Filter and press Enter to proceed. This is acceptable as long as appropriate messages like “You have reached the top of records that match the selection month=2” and “You have reached the bottom of records that match the selection month=2” are shown to user.
2)		Likewise, position to will position to a particular record and all the records after that in PF will be loaded. If user tries page up, that may not work; however, page downs will work until the actual end of PF. Some programs may display a message like “You have reached the top of month=2 data”. In fact, a page up in such case should use READP / READPE on the PF and insert data at the top of the subfile. (For this again, we may require resequencing of RRNs & subfile save & copy operations (with a duplicate subfile) available in RPG).
	Expanding method works in one direction only - the subfile will grow at the end, not at the beginning. There is no op-code or method to insert records into a Subfile at the top or anywhere to allow the subfile to grow at the beginning.

3)		Subfile Opt 4=Delete is used for deleting records from PF, in a program I have worked with. After delete confirmation pass, the records will be deleted from PF and the subfile will be reloaded from the PF again. Instead of that, Delete a record from a subfile as an operation (Delete is op-code and Sflrcd is operand) is required along with rearranging the RRNs. Thus, reloading time will reduce a lot.

Declaration:
I have taken care to make the details correct and the document meaningful. I would like to apologize if you find something is incorrect or unacceptable. Thank you.

Author: Karunakaran Nellian (karna77engg@gmail.com)

3

